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Abstract. A variational principle for finite isothermal deformations of anisotropic compressible and nearly incom-
pressible hyperelastic materials is presented. It is equivalent to the nonlinear elastic field (Lagrangian) equations
expressed in terms of the displacement field and a scalar function associated with the hydrostatic mean stress. The
formulation for incompressible materials is recovered from the compressible one simply as a limit. The principle

is particularly useful in the development of finite element analysis of nearly incompressible and of incompressible
materials and is general in the sense that it uses a general form of constitutive equation. It can be considered as
an extension of Key's principle to nonlinear elasticity. Various numerical implementations are used to illustrate
the efficiency of the proposed formulation and to show the convergence behaviour for different types of elements.
These numerical tests suggest that the formulation gives results which change smoothly as the material varies from
compressible to incompressible.

Key words: nonlinear elasticity, near incompressibility, variational formulation, finite deformations, finite ele-
ments.

1. Introduction

It is often assumed that rubberlike materials are nearly incompressible materials. The near-
incompressibility of the material can often lead to numerical difficulties [1-3] when a nu-
merical solution, such as the finite element displacement solution, is sought. However, in
the context of linear elasticity a good understanding of this phenomenon has been given by
various authors, semg.[1] and [4]. In the past, many finite element models, based on penalty
methods, selective-reduced integration schemes, ‘approximate constraints’, mixed, Lagrange
multiplier, field consistent and orthogonal projection methods for linear and nonlinear (finite)
elasticity have appeared in the literature, see e.g. [5-13], and good results may be obtained
from some of them. A finite element solution for a nearly incompressible problem can also
be obtained from the corresponding perturbed incompressible problem and an example of
such a solution can be found in [14] where the method is based on the work of Spencer
[15]. The boundary element method can also give good results for nearly incompressible and
for incompressible linear problems (see refs. [16], [17]), but its extension to geometrically
nonlinear problems is not straightforward, seg.[18]. Here, however, we concentrate on
developing a mixed finite element method for nonlinear anisotropic elastic materials. Mixed
methods, in the linear case, can overcome the locking problem for Poisson eafi@l to or

close to one half, and examples may be found in [2, pp. 9-24]. An advantage of certain mixed
methods, in the context of linear constraints is that they generally yield good approximations
to the ‘pressures’ also; see the comment made by Babuska and Suri [19, p. 440].
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The aim of this paper on the theoretical side is to develop a Lagrangian model, which is
general in the sense that it admits a general form of strain energy function, for both compress-
ible and incompressible materials. This formulation may then be used with commercial finite
element codes (the formulation in this paper uses the pre- and post-processing of the PERFINE
[20] finite element software). Numerous existing forms of the strain energy function belong to
the proposed general form developed here. The work here is an extension of the recent work
of Shariff [10] on isotropic elasticity. However, the proposed formulation (and the approach)
here is different from that of [10] since it is motivated by suitability for future numerical
computation using a modified augmented Lagrangian method, recently developed by Shariff
[21].

On the computational side we indicate, in Section 5, various possible implementations
of element types in the nonlinear model. We discuss the performance of only certain types of
one- and two-dimensional elements. In the case of the two-dimensional element we discuss the
performance of the popular, but unstable, Q1-P0 [2] element and a LBB Q2-Q1 [2, page 34]
stable element on various numerical simulations. Note that the stability properties of the above
two-dimensional elements depend crucially on the linear plane incompressibility constraint.
Other types of elements could be used in the proposed formulation but it is beyond the scope
of this paper to discuss the performances of all types of elements.

On specialising the proposed variational principle to linear (classical) elasticity, Key's
principle is recovered for anisotropic materials.

2. Compressible hyperelastic materials and the incompressible limit

Following the works of Ogden [22, pp. 508-509], amongst others, we consider the modified
deformation gradient tensdt*, defined in terms of the deformation gradidnts follows

F*=J Y8F,  J =detF 1)
so that
detF* =1. (2

In this way, F = JY3F* is composed of a pure dilatiai*/*1 and an isochoric deformation

F*. For an incompressible material, = 1 for all deformations, so thaf* = F, and in a
solution to a boundary-value problem for such a material we denote the deformation gradient
by Fo, where detFg = 1.

The strain energy functiofV is treated as a function of the Green strain tenBoe=
%(FTF — I, rather than ofF (though the analysis can be simplified by usiRg. Our
reasons for doing so are, firstly, thEtis commonly used in finite element analysis, secondly,
that writing W in terms of E ensures thaV is objective and, finally that in Section 4 it is
convenient to usé to relate our principle to Key’s principle [23].

In order to facilitate our analysis, we define a modified Green tensor

E'=iF"F -1)=J2PE+1J?P-1 (3)
and then express the strain energy function as

W(E) = W*(E*, J) 4)
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sinceE* andJ may be regarded as independent variables. In fact, they each are functions of
F, given by Equations (1) and (3), with the symmetric maffiksatisfying

det2E* + 1) = 1. (5)

The Cauchy stresE and the second Piola—Kirchhoff stress teng&? are given by

AW IW*
T=JFTPF", T9=_—=J%(_— -pPC*), (6)
OE dE
where
oW ow*
P*=1tr (8E* (2E* + 1)) ey and C*QRE*+1)=1. (7

The derivation of (6) requires an expressiondd*/d E, the Cartesian components of which
are obtained from (3) as

OE}JOE,s = J723(8;,8;s — 3(2E}; + 8;;)C},) (8)

(althoughE,, = E,q, it is preferable in the algebraic manipulations to trégt and E,; as
independent when # s). In terms of W*, the hydrostatic part of the stress has the simple
expression

1 —
lur =

. 9
aJ ©)
Inspection of (6), (7) and (9) shows that the reference configuration is stress-free if and
only if

oW aw*
(0’ 1) - 0’ =
aJ dE*
while there is no loss of generality in taking the strain energy to vanish in the reference
configuration:

0,1) =0, (10, 11)

W*(0,1) = 0. (12)
Moreover, one possible definition for the ground state bulk modulus is (following Ogden [22])

92W*
9J2

X = 0,1). (13)

2.1. INCOMPRESSIBLE MATERIALS

An incompressible material has = 1, so that the Green strain tensor denotedHyy =
2(F{ Fo — I) must satisfy

detREo+ I) = 1. (14)
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Let Wo(E) denote the strain energy function. The second Piola—Kirchhoff stress is related to
the deformation through

aWo
T® = —= — PyCo, 15
S~ PCo (15)

whereCq = (2Eo + I)~! and P, is an arbitrary scalar function. Ify denotes the Cauchy
stress then its hydrostatic part is

W,
Hr(To) = 3tr [ 2 REo+ D)) — Po. (16)
IEo

As we shall see in the following, these formulae are recovered from a corresponding com-
pressible material by taking the incompressible limit.

2.2. STRAIN ENERGY FUNCTIONS FOR COMPESSIBLE MATERIALS AND THE
INCOMPRESSIBLE LIMIT

In the incompressible limit/ is entirely insensitive to the value pf= %tr(T). In an ‘almost
incompressible’ material, the ground-state modujuss large compared to all remaining
ground-state moduli, u2,... (just a single shear modulus in the case of an isotropic material).
In this case, since large pressure changes are necessary for appreciable volume changes to be
produced,/ — 1 should be regarded as a functionksf and ofpp, wheren = u/x <« 1, with
po=(u2 4 ps+-- )2

We introduceW (E*, p), a partial Legendre transform [24] &f*(E*, J), through

w* ow*

A 0
W(E*, p) = W*(E*,J)—(J—l)w, p=-— 37 (E*, J). a7)

Since this yieldSV*(E*, J) = W(E*, p) — p(J — 1), identities of the standard form arise

oW W™
J —1=—(E*, p),
p( P) B

W
(E*,J) =

W(E*’ p). (18)

0

While (18), is the formal inverse of (1%) no equivalent of (1%)exists in the limity = O for
which J = 1. However, for small;, we expect/ — 1 to depend on shape changes associated
with E* and to be approximately linear ifp so having the form

J =1-nJo(E") — npJi(E™) + 0(n).
Comparison with (18)then motivates the decomposition

W(E*, p) = Wo(E*) — npJo(E*) — $np* JL(E™) + nWa(E*, ), (19)
whereg = np and wherel, is a smooth function of for which

. W,
Wa(E*.0) =0, —=2(E*.0)=0. (20)
q
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This gives

A

. 1—-J Jo(E*) n 8W2
P=Sn@EY ~ hEH T WE) g

(E*, np), (21)

which may, in principle, be inverted to expregsn terms of the strain measure$ — 1)/7
andE*. Insertion ofp into W* = W — paW /ap yields W*(E*, J) in the form

. aW.
W* = Wo(E*) + 3np2Ji(E*) + nWa(E*, q) — nqa—qzw*, ). (22)

while the corresponding expression toi* /9 E* required in (6) and (7) is

IW*E AW IWp 0o . 0k  OWs
- - — _1 E*. q). 23
B B 9k "Wag W g Tap B9 (23)

The ‘incompressible limit’ corresponds to— 0 with p finite, in which case the first term in
(21) is indeterminate, so that the contributiprto P* in (6) and (7) cannot be expressed in
terms of E* andJ — 1. This same limit gives

AW aw,
lim = —
—00E* oE*

(EM),

taking note tha/ — 1 asn — 0.

It may be observed that several forms of strain energy function developed previously be-
long to the class corresponding to (19) and (22). For example, Scott [25] uses a strain energy
of the formt

W*(E*, J) = a(E*) + B(E")(J — 1) + 3x(J — Dy (E") (24)

in studying the slowness surfaces of elastic materials. This gives —B(E*) — x (J —
1)y (E*) which leads to

0 (p+BED?

W(E*, p) = a(E*) — 20 P (E)

(25)

2.3. SPECIALIZATION TO ISOTROPIC ELASTICITY

For an isotropic hyperelastic solit% can be expressed as a symmetric function of the prin-
cipal stretchesi; (i = 1,2, 3), so that we consider a class of strain energy functidtis
associated wittw (E*, p) of the form

—30P° fuAf, A3, A3) + nfa(A5, A3, A3, np). (26)
1 We note that Scott proposed a slightly more general form of the strain energy funeioh* (E*, J) =

a(E*)+B(E*)(J -1+ %(J — 1)2 9(E*) with the property that (E*) and8(E*) are finite but do not become
indefinitely large a®) (E*) — oo.
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Here, each of, fo, f1 and £, is symmetric in the three arguments= J~/3};, which must
satisfyAjAs A5 = 1 andiiioh3 = J. Alternatively, we may replace the arguments A3 and
A% in (26) by any two quantities symmetric in all three, for example

L=x24a2 4232 and =224 05240572 (27)

In either case, we takf (A7, A3, A%, ¢) to be a function of; = np, having derivatives of O(1).
Some examples div* which appear in the literature are given in Appendix B, together
with associated expressions for

3. Variational principle

The basic equations of nonlinear elasticity may be summarised as follows. Consider an elastic
body occupying the regio®, in some stress-free configuration. A pointBg is identified
by its position vectoX relative to some origin. Under deformation this point moves to a new
positionx (X). The displacement vectaris given byu = x — X.

The equations of equilibrium are

DivS+ p0b =0, X € By, (28)
S=0d0W/aD, D =Gradu =F — 1,

wherepg is the mass density (per unit undeformed volume), Div and Grad denote the diver-
gence and gradient operators relativeB S’ is the first Piola—Kirchhoff stress arid the
body force, is expressible as

b = —grado, (29)

where® is a scalar function at and grad refers to the gradient operation with respegt to

Boundary conditions of a fairly general form are considered. g&tX), g2(X), g3(X))
be an orthonormal set of vectors ab#, be the boundary oBy. At each point ofd B, m
components of displacement are specifi@d=0, 1, 2, 3) through

ug, =(X), XedB), (30)

whereg; is the reciprocal (or dual) basis fgf, while exactly 3— m components of traction
are related to the displacement and displacement gradient through

S'N.g/ =o’/(X,u, D), X €9Bj, (31)
wherei, j can take the values of 1, 2 or 3, with
9B, N3dBy=W, 9B, U3By =3By (32)

with no summation over in (32) and withN the unit outward normal t@ By. The above
boundary conditions have been useceig. Refs. [8] and [26]. The use of the theorem of
minimum potential energy (in the context of linear elasticity) in finite element displacement
models generates solutions in which accuracy is adversely affecteigsoaches the critical
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value 05 [27]. The inaccuracies are associated with the fact that fer 0-5, the usual dis-
placement formulation is no longer valid [27]. To avoid this difficulty, Key [23], for example,
discretized the infinitesimal hydrostatic mean stresg3 (= —p, say) independently of the
displacement field and determined it from the linear volumetric dilatation by the relations (see
Appendix A for the notations below)

ek = (—3p — Cruije;;) /3x.- (33)

Within the strain energy functiorg, is replaced by the right hand side of Equation (33)
and relation (33) is also introduced into the functional via a Lagrange multiplier. A similar
principle (but a different method) is applied to nonlinear elasticity. Usipgagain to denote

the hydrostatic mean stres$# /3, we have from (18) and (19)

W . i} oWy .
J:l+¥=1—ﬂJ0(E ) — npJu(E )+nZW(E . q). (39

Provided that the right-hand side of (34) is monotonic and continuogisatreachE™, Equa-
tion (34) may be inverted uniquely to giyein terms of E* and (J — 1)/5. Then, the strain
energy functionW*(E*, J) associated to (19) is found through

W*=W(E* p)—(J —Dp,  p=PE, 7 -1D).

Equations (28) and the associated boundary conditions (30) and (31) result from the vanishing
of the first variation of the functional

M(u) = / (W(E) + po® (X + u) — W} dV, (35)
Bo

whereu (X) is any displacement field satisfying the essential boundary condition (30), provided
only that the scalar functio = ¥ (X, u, D) satisfies Lagrange equations of the form

L AN
Div(— |-~ =0, X e B (36)
D) du

and has boundary values which satisfy

v ! J J J
ﬁ Ng =0 (X,M,D), XEBBO. (37)

Indeed, vanishing of the first variation of (35) yields

ow ov ow
0 = 61 = tr{ =—86D ) — pob.du — —.6u —tr{ —38D dv
J e (5o2) = pu =G (To0)|
. [ OW el oV
= / {—DIV (—) — pob + Div (—) — —} SudV
B D D du

oW oW
+/ {NT— - NT—} SudA.
Bo oD oD
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This formulation requires identification of a solutioh(X, u, D) to (36) in By satisfying
the boundary conditions (37) on the three portions of boun(aairé/ over which traction
components are specified as in (31), but requires no restrictions on portions ofd By
wheredu = 0. In the special case for whiakV depends orX andu, it is possible to replace
(35) by

M = [ (WE)+ pmordv - [ yaa, (38)
Bo BBg
wherey (X, u) is a scalar function such that
0 ; . )
8—w.g’ =o/(X.u), X €0B] (39)
u
and
3 .
oBg = JoBj.

j=1
In Equation (35), the tern (E) may be expressed in terms Bf andJ as
. oW IW*
W(E) = W*(E*,J) = W(E*, p) — pa—, p=-—
p aJ
whereJ and E* are themselves defined in termswothrough (1) and (3), withF = I +
Gradu. Alternatively, by defining/,(E*, p) as the solution to
ow*
aJ

while still regardingJ and E* as derived fromu, we replace the functional in (35) by one
defined in terms of the independent fieldand p as

(E*, J),

(E*, Jp) = —p, (40)

T*(u, p) = / {(WH(E*, J,) + (J, — J)p + po® — W} dV. (41)
Bo

This is appropriate whes’ depends oiX, u and D as in (37). Similarly, ifo/ depends only
on X andu, the functional in (38) is re-expressed as

M*(u, p) = | {WNE*, J,)+,—J)p+ po®}dV — Y dA. (42)
Bo dBg
Recalling that in (41) and (42) boti* andJ are computed fron¥ = I + Gradu, while
J, = J,(E*, p), defined through (40), depends alsogrwe find that whenevar belongs to
a set of kinematically admissible deformations which are suitably smooth and which satisfy
the essential boundary condition (30) whilés also sufficiently smooth, the vanishing of the
first variation ofIT* gives

aw* aw*
0

+p8J, — psJ — pob.au}dv — / o/8u;dA. (43)
d

Bg
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Hereo/su; is summed over the region where the components of the surface traction are
prescribed, whileSu; are the components @fz written in terms of the basis vectogs .
Equation (43) yields the boundary conditions (37) together with the field Equations (28), in
which § is now expressed as

*

ow
S = J_Z/S(W - %U[(ZE*—}-I)

ow*
OE™

)} Cc* - Jpc*> F' =T@PFT. (44)

It also yields the conditioy (= detF) = J,(E*, p). This validates the use of either of the
functionals (41) or (42) for determining displacements and stresses.

In the incompressible limiy — 0, the stress distribution correspondsit® — (3 W/
oE*) — P*C*, with / — 1 and withP* — %tr{(SW*/BE*)(ZE* + I)} — p. In the finite
element method, Equation (43) is solved for an appropriate clasawd p. It is clear that the
formulation is valid for both compressible and incompressible materials, just like the similar
analysis of Refs. [23] and [28] for linear elasticity. In the formulatipmppears explicitly. In
practice,n will become numerically negligible whilg remains finite, at a value dependent
on the computing machine.

For isotropic materials, the variational principles may be written in termg anda (or
I} and}) by replacingE™ in (41) or (42) much as in subsection 2.3. As in the general aniso-
tropic case, the resulting Euler equations are equivalent to the equations of the corresponding
boundary value problem.

4. Connection with Key’s principle

On specializing our principles to the classical linear theory of elasticity we obtain the func-
tionals

M (u, p) = / {=pew — (P + 5Smij€)°/2x + 3Sijue};ex; — pob.u} dV
Bo

—/ o’/u;dA (45)
dBg

for anisotropic materials [See Appendix A for the above notations] and

[1* = / {neje; — pewr — %Xflpz — pob.u}dV — / crjuj dA (46)
Bo 9BS

for isotropic materials.
The above principles are similar to that of Key’s principle [23], in the case of an isothermal
deformation.

5. Numerical examples

The formulation above is currently being implemented in the PERFINE [20] finite element
software. Here, to give confidence in the formulation, numerical solution of a one-dimensional
problem is outlined, using a Newton—Raphson method with incremental loading to solve the
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Figure 1. Finite-element representations of an infinite undeformed cylinder.

discrete equations. The formulation is also tested numerically on a few two-dimensional prob-
lems, and will be extended in the future using a modified augmented Lagrangian method re-
cently developed by Shariff [21]. The behaviour of Q1-P0 and the LBB Q2-Q1 two-dimensional
elements is investigated using a neo-Hookean elastic material with strain energy function
given by Blatz [29] (See Appendix B)

E
4(1+U){(1+ 5+ A3°) ( )} +

3x(J—1—log J)
2(1+v)

SN CY)

where E is the ground-state Young's modulus. The Q1-P0O rectangular element consists of
bilinear functions (4 nodes) approximating the displacement, with the pressure taken as con-
stant over the element. The Q2-Q1 rectangular element consists of quadratic functions (8
nodes) approximating the displacement and bilinear functions approximating the pressure.
An element is LBB stable if it satisfies the div-stability [2] condition, otherwise it is unstable.
The two-dimensional problems are computed on an INMOS Transputer with 2MB of RAM.
Double-precision arithmetic is used and the tolerance for the residual of Equation (43) is set
at 10%x relevant factor.

Ground state Poisson's ratio, 0.5 Ground state Poisson's ratio, 0.5
5 elements

sa—Finite Element

s—Finite Element E t Soluti
—Bxac olution

—Exact Solution

- i N
I i ]

Displacement of interior nodes
°
wn
I

—Radial C;uchy eress/Young‘§ Modulus
°
&
I

R

T T T ! T T T T 1
0.05 0.1 o.15 0.2 0.25

12 1.4 18 E] 2

Internal Pressure/Young's Modulus Undeformed radius

Figure 2. Comparison of exact displacement with Figure 3. Comparison of exact stress with finite
finite element displacement for incompressible mater- element stress for incompressible material using 5
ial. elements.
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5.1. ONE-DIMENSIONAL TEST PROBLEM INFLATING AN INFINITELY LONG
THICK-WALLED TUBE WITH AN INTERNAL PRESSURE

This example is a simple test problem for which the results of the proposed formulation can
be compared witkexactand previous finite element calculations. Exact and finite element
solutions for incompressible material can be found in Green and Zerna [31, pp. 88-92] and
Oden [32, pp. 321-331], respectively. The internal and external radii of the tube are taken as 1
and 2 units, while the strain energy function (47) is used. Internal pressures as highsas 0

are considered, corresponding to strains of order 150%, so that the behaviour falls outside that
capable of being predicted by classical theory. For simplicity, results shown in Figures 2-4
use only 5 linear one-dimensional elements spaced equally, as shown in Figure 1p &ince

a measure of stress, it is taken as constant within each element, with value denpteddy
permit the reader to check on the results, details of the finite element equations are now given.
Letu!, u? and Ry, R, be respectively the nodal radial displacements and radial coordinates of
an element. We then have the approximations

=02 4 02 4057 = (14 A% + 0d) (0N,
where

A=1+ w?—uY/(R,— Ry, w=1+i/R,

i=w'+u®/2 and R = (Ri+ R»)/2.

Within each element, we determine the valugpfrom I} and p, by solving numerically the
eqguation

2(1+v
+( )

J,=1
p 3X

(=pedy — nGIT T2 — 7). (48)

The nonlinear element stiffness relations then are
—DHVA B
(=D L5

L 2R

mﬁ—Rb< ):fﬂ N=12,

together with
oA = J,,

whereL = Ry — Ry, J = oA, u = E/(2(1 + v)), where fV are the elemental loads and
where
A wlf w ALY
_ 23( =2 % _ 3 %@ 1
A=pJ, (]2/3 3J>+pa), B=ulJ, <J2/3 3J)+pA.

The global nonlinear stiffness equations are solved using a Newton—Raphson method together
with 4 steps of incremental loading. From the graphs illustrated in Figures 2—-3 it can be seen
that our solution agrees well with the theoretical solution [30]. Note that the theoretical (exact)
solution requires numerical determination of a paramefesm the equation

C C
internal pressure- 1E !log(1 — —log(4 — — +log 4; ,
p 6 { a( +C)+1+C g4+ o) 4+C+ g }
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Figure 4. Comparison of our Principle with the Principle of Stationary Potential Energy.

Contour plot

Plane Strain Contour plot for X-Displacement

Results Job CYLN
*-Displacement

Function values
Max 1.489
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Figure 5. Plane strain problem of inflating an infinitely long circular tube by an internal press@delb.
Deformed and undeformed configuration. Q2-Q1 elements.

and the displacementat R = 1 (say) is given byt = 1+ ¢ — 1.

The number of iterations required for = 0-499, 04999, 049999, 0499999 and &
are identical. For smaller, the number of iterations remains about the same. No numerical
difficulties were encountered forQ v < 0-5. When our solution is compared (see Figure 4),
for smaller values of (i.e.v = 0 and v= 0-3), with a solution obtained using the standard
principle of stationary potential energy, the solutions agree completely to four significant
figures.

We also compare the one-dimensional results to the equivalent two-dimensional plane
strain results using six Q2-Q1 elements (see Figure 5). We note that the results are similar
to those using 5 one-dimensional elements and are indicated in Figure 5.



An extension of Key’s principle to nonlinear elasticity83

5.2. TWO-DIMENSIONAL PROBLEMS

We investigate the performances of the Q1-PO0, the eight-noded ‘serendipity’ Q2-Q1 and the
Q1 (based on the standard displacement model) elements on plane strain and axisymmetric
problems of bonded elastic mounts. The problems concern flat deformable blocks bonded
between two parallel rigid end-plates. The plane strain problem concerns a rectangular strip
of infinite breadth whereas the axisymmetric problem concerns a circular disc. The mounts
are subjected to tension and compression. The strain energy used in the calculation is of the
form given in Equation (47). The solution for the Q1 element (associated with the standard
displacement model) is obtained from the parallel element software developed by Shariff [32],
where a nonlinear Jacobi preconditioned conjugate gradient method is used to solve the system
of nonlinear equations. In the case of the Q1-P0 and Q2-Q1 elements the system of nonlinear
equations is solved via the Newton—Raphson method. In most calculations, ten increments are
used and convergence generally occurs after two iterations per increment.

5.3. RLANE-STRAIN TENSION

Both faces of the rigid block are displaced to give symmetry, so that a mesh need cover only
a quarter of the block. This is an example of an inhomogeneous test problem. Figures 6 and 7
depict the deformations and the Cauchy stress for various compressibility moduli. The figures
indicate severe stress inhomogeneities near the bonded edge for both Q1-P0 and Q2-Q1 ele-
ments. Using a different formulation, Miehe [11] observes similar behaviour for the Kirchhoff
stress. In Figure 8 the convergence as the number of elements is increased is depicted; it
shows the scale forcg/E for the axial stretch., = 3, plotted against the number of mesh
elements in a quarter of the block. The force is calculated using a variational equation similar
to Equation (43) not from the stress calculated at the bonded surface, which is discontinuous.
F is an integral quantity, which characterizes the whole system. In the compressible case,
the results for the axial force are nearly independent of the number of elements. However,
in the case of nearly incompressible and incompressible materials, the Q2-Q1 element per-
formed better in the sense thAY E for the Q2-Q1 element approaches a limit using fewer
elements. We should, however, note that the Q2-Q1 element has more degrees of freedom
than either the Q1-P0 or Q1 elements. The Q1 element solution exhibited an extreme locking
phenomenon for near-incompressibility. Corresponding results are not plotted. For moderate
values ofi, — 1, Shariff [33] has shown analytically that the value ofE obtained by a

finite element displacement model is an upper bound for the actual force; Figure 8 seems to
indicate a similar behaviour, although no rigorous analyses have been made to validate this
behaviour, using the proposed formulation. The formulation proposed by Miehe [11] also
indicates such behaviour. Figure 8 indicates that the tensile force for a compressible material
exceeds the tensile force for an incompressible (or nearly incompressible) material. Initially
this result was not expected; Miehe [11] had shown otherwise, using Ogden’s [22] material.
This seemingly odd result is due to the Blatz material, not to the finite element formulation,
as explained by Shariff [10].

5.4. A.LANE STRAIN COMPRESSION AND AXISYMMETRIC DEFORMATION

The behaviour of the finite element solutions for plane strain compression and axisymmetric
deformation is similar to that of plane strain tension. Hence we shall not depict the results.
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Figure 6. Plane strain tension test: Q2-Q1 element. Deformed configuration and a component of the Cauchy stress
T»», at axial stretctho = 3 for various values of Poisson’s ratio.

However, for thin blocks the volume change for nearly incompressible material under com-
pression can be significant. Volume changes per unit undeformed volume are calculated and
it is found that the volume change increases wiffthe ratio of one loaded area to the cor-
responding force-free undeformed area), as expected [33]. We also observed that for the case
of axisymmetric deformation, far = 2.39, E = 175kg andv = 0-49971 (these values are
those obtained by Gent and Lindley [34] for soft gum rubber vulcanizate in their experiment),
the volume change for both types of element35584 x 10-2 and this is an order of mag-

nitude higher tham/x = 0-5795x 10~3; this indicates that the proposed formulation is also
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Figure 7. Plane strain tension test: Q1-P0 element. Deformed configuration and a component of the Cauchy stress
T»o, at axial stretchio, = 3 for various values of Poisson'’s ratio.

valid for moderate volume changes unlike some previous formulations where an assumption
of small volume change (of ordet/ x) is required for nearly incompressible material.

5.5. SOME REMARKS

For all the above types of elements singular stress fields are mildly detected near the bonded
edges although they are not clearly shown in Figures 6 and 7. The magnitude of the gradients
of the stresses increases sharply just adjacent to the bonded edges. However, when the number
of elements is increased near the bonded edges singular stress fields are more significantly
displayed there. The use of special singular elements could give a better picture of the stress
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Figure 8. Plane strain tension test: Convergence of different elements.

fields near the bonded edges. We note that we found no evidence of oscillatory stress be-
haviour using the above types of elements and this is clearly indicated in Figures 6 and 7.
We also note that in the present paper we have used the Newton—Raphson (with incremental
loading) method to obtain the solutions. This method is not suitable for calculating solutions
for unstable problems; an example of an effective method for unstable problems is a modified
Riks method [36]. Nevertheless, we found that, for example, in axisymmetric compression,
the Q1-PO0 elements deformed unreasonably [10] near the bonded edf¢2fbe= 2-39 and

L/2H = 2.15 at 15% (and higher) and b/% (and higher) compressions, respectively. This
could indicate the possibility of surface (or global) instabilities for the compression problem.

6. Conclusion

Variational principles have been developed which permit the description of the behaviour
of nonlinear deformations of compressible and incompressible elastic solids (which need
not be isotropic). The principles are general in the sense that they permit use of a general
form of strain energy function. The numerical examples using various types of elements
demonstrate that accurate results can be obtained for the analysis of compressible, slightly
compressible and incompressible materials. The principle may be regarded as an extension of
Key’s principle to nonlinear elasticity.
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Appendix A
The linearisation of Equations (6) and (7) should be consistent with the linear elastic relations
0ij = Cijuen = Cijuel; + 3Cijkkerr, (A1)
in which e;"j = e — % exxd;j are the components of deviatoric strain, whilg ande;; are the cartesian
coordinates of Cauchy stress and infinitesimal strain respectively. Additioally, are the classical elastic
coefficients for anisotropic hyperelastic materials dj)dis the Kronecker delta. Within linear theory, we have

the approximations

J—1=ep. (A2)

f el
Since (A1) shows that the hydrostatic mean stress is given by

1 1 1
—p = 30ii = 3Ciiney; + §Ciirrekk, (A3)

it is clear from (A3) that in the incompressible limig — 0) C;;,,» becomes infinite in such a way that the
productC;;, exx remains finite, but indeterminate. Let

X = %Ciirw (A4)
The behaviour ag — oo is clarified by considering a class of elastic coefficients that can be defined as follows
Cijki = Sijki + X80k (A5)

wheres;jx; do not become indefinitely large gs— oo. From (A4) and (A5) it is clear thaf;;,, = 0 and that
(A3) becomes

20ii = §Siikiel; + Xerr, (A6)
while (A1) becomes
oij = Sijki€f; + (3Sijkk + x8ij)err. (A7)

In linearisation of (6) and (7), we define

My = 22w 01)=M Ni; = 2w (0, 1) _ (0, 1)
TR T CAE TV At VA
so yielding
P*~ —(x = 3Npplerr + (3Mppis — Nip)e. (A8)

2
oij & Tig-) ~ (M + (Nig — 3Mppi)8ij el + (Nij — 3Nppdij + x8ijerr,

after use of Equations (10) and (11). Agreement with (A6) then requiresithaty and S;;,; = 3Ny, while
consistency with (A7) arising from classical elasticity requires the further conditions

Npp =0, M;jis = Siju- (A9)
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Thus
32w
o 0.0 = Cijrs — x8ij8kis (A10)
OEIE],
with
3 2y * 2% 3 *
°W “W oW
E 0,1)=3——(0,1), E —(0,1) =0. All
— E* HE* ©D BJBE* ©D —1 BJBE?‘,I,( ) ( )

Assuming that the unstrained state is stress-free, the stress-strain relation corresponding to strain energy function
W*(E*, J) then has the linearisation

2w 2w

————(0,1e* 0,1 Srs- Al2
8Ei}8E§§q (0, De (0, Degr + xekkdrs ( )

Ors =

rat dJIES,
(This decomposition (A5) of;j;, in which the bulk modulus appears explicitly, seems not to have appeared

earlier in the literature).

Appendix B

For some specific forms diV (E) previously proposed, the equivalent expressibh(E*, J) and consequent
forms for (17} relatingp, J and E* are given below.

Using the decomposition

W*(E*, J) = ¢ (1], A5, 23, J) + xh(J) (B1)
for isotropic materials, Ogden [22] takes

¢ = g0}, A5 + (J — D103, 25, 2= (pap) T (B2)

when dilatation is not restricted to @)(while, in [35], he uses

¢ = Z —{(A*a” +)L*o!n —|—)L*a")J°‘”/3 3—ay, log J}. (B3)

The exponents,, and termsgu, are real material constants, chosen to characterise rubberlike materials.
Blatz [29] proposed the form

¢ =31 —3) —n(J =1 = {02+ 252 + 232773 = 3) — (g - D). (B4)

Forh(J), Ogden [22, 35] uses

oh  J9-1
_1 9 i _
= gllog J + 3 (J —1)} giving 37 = 9s10 (B5)
while Blatz [29] uses
3J—-1-logJ) .. an  31-J1
= - =7 — = - B
h 20+ ovINg 37 = 2@+ (86)

Consequently, using (B2) and (B5) as in [22] gives

IW* b10L ) + J9-1
s~ ML T g0

—p =
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so that

J-1= 2 /2 {p+ 111, A5} (B7)
wil+J+J24.-+J8

Similarly, using (B3) and (B6) as in [35] yields

10
Jo1 = 9 /
wl+J+J24... 478
1 )\'*an )\'*an )\'*an J —1+a,/3 3 BS
Xp+§;ﬂn(l+2 +i3") T (B8)
while using (B4) and (B6) as in [29] gives
J—1=5Q+vn(A - p/wJ - 3h). (89)

Solution of any of (B7)—(B9) gives the corresponding function
J=Jp(Af. 25, p).

Equation (B9) has been used for the computations in Section 5.
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